Question	Answer	Marks
1a)	car dioxide/a gas is made;	1
(b)(i)		1
(b)(ii)		1
(b)(iii)		1
(b)(iv)	0.031 (2 marks) M1 (iii) /0.0162;	2
(c)	0 (dm ³) M1 moles carbon dioxide = 0.02; M2 volume carbon dioxide = 0.02×24 ; M3 = 0.48 (dm ³);	3 1 1 1

Question		Answe	r	Marks
2(a)(i)	compound containing carbon a	nd hydrogen only;		1
(a)(ii)	_nH _{2n+2} ; C _n H _{2n} ;		2	
b)(i)	mol C = $54.54/12$ or $4.5(45)$ and mol H = $9.09/1$ or 9.09 and mol O = $36.37/16$ or 2.27 ; C ₂ H ₄ O;		2	
(b)(ii)	$M_{\rm r}$ of C ₂ H ₄ O = 44; 88/44 = 2 therefore C ₄ H ₈ O ₂ ;			2
(c)	methyl ethanoate;	ethyl methanoate;		4
	CH ₃ COOCH ₃ ;	HCOO ₂ H ₅ ;		
(d)	met propanoate;			1
(e)(i)	condens		1	
e)(ii)	/ H ₂ O;			1
(e)(iii)	dicarboxylic acid or diacyl chlor diol;	de;		2

Question	Answer	Marks
3(a)(i)	adds up to 100%;	1
3(a)(ii)	M1 55.85/12 and 6.97(/1) and 37.2/16; or evaluation 4.650 6.970 2.325; M2 C_2H_3O ; correct answer with no working = [2]	1
3(a)(iii)	M1 (86/)43; M2 $C_4H_6O_2$; correct answer with no working = [2]	1
(b)(i)	unsa /C=C double bond/alkene;	1
(b)(ii)	/ carboxylic) acid / contains or releases H ⁺ ions;	1
(b) (iii)	$_{3}$ CH=CHCOOH/CH ₂ =CHCH ₂ COOH/CH ₂ =CH(CH ₃)COOH;	1

Question	Answer	Marks
4(a)	moles of KOH used (= 0.025×2.53 =) $0.06325/0.063$; number of moles of H_2SO_4 needed to neutralise the KOH = $0.031625/0.032$; concentration of dilute sulfuric acid = $1.121/1.1$ (mol/dm ³);	3
4(b)(i)	repeat experiment using same volume/amount of (same) H ₂ SO ₄ ; and same volume/amount of (same) KOH; or (add activated) charcoal/carbon; filter out the charcoal; or mix volumes/amounts of H ₂ SO ₄ and KOH in the ratio 1:2; of the same concentration;	2
4(b)(ii)	make solution of potassium sulfate as above; add same volume/amount of acid again; or same volume/amount of KOH; add double the volume/amount of H_2SO_4 ; $25 \text{ cm}^3 \text{ KOH } + 56.4 \text{ cm}^3 \text{ H}_2SO_4 = [2]$ or same volume/amount of H_2SO_4 ; add half the volume/amount of KOH; $12.5 \text{ cm}^3 \text{ KOH } + 28.2 \text{ cm}^3 \text{ H}_2SO_4 = [2]$ or mix equal volumes/amounts of H_2SO_4 and KOH ; of the same concentration; mix solutions containing equal numbers moles of KOH and $H_2SO_4 = [2]$	2

Question	Answer	Marks
4(c)	<i>test:</i> reactive metal/name or formula of suitable metal, e.g. Mg/Fe/Zn; <i>result:</i> bubbles or gas or hydrogen or H ₂ evolved/dissolves;	2
	<i>test:</i> insoluble carbonate or name/formula of suitable insoluble carbonate, e.g. CaCO ₃ ; <i>result:</i> bubbles or gas or carbon dioxide or CO ₂ evolved/dissolves provided that carbonate is insoluble;	
	<i>test:</i> alkali or name/formula of suitable alkali, e.g. NaOH/KOH; <i>result:</i> temperature change;	
	<i>test:</i> alkali or name/formula of suitable alkali, e.g. NaOH/KOH and indicator; <i>result:</i> colour change;	
	<i>test:</i> insoluble base or name/formula of suitable insoluble base; <i>result:</i> dissolves;	
	<i>test:</i> indicator, e.g. blue litmus; <i>result:</i> colour change (colour need not be specified);	
	<i>test:</i> measure pH/pH paper/UI paper/pH meter; <i>result:</i> pH 0–3 or indicator red/orange or pH lower than pH of K ₂ SO ₄ ;	

Question	Answer	Marks	Guidance
5(a)(i)	(Haber process makes) ammonia/NH ₃ ;		
	(ammonia converted into) fertilisers/nitrates/ammonium salts or names or formulae of examples e.g. ammonium nitrate/NH ₄ NO ₃ /ammonium sulfate/(NH ₄) ₂ SO ₄ /calcium nitrate/Ca(NO ₃) ₂ /urea/CO(NH ₂) ₂ ;	2	 A 2 marks for 'ammonia is a fertiliser' A ammonia is used to make sodium nitrate Haber process used to make fertilisers gets second mark only
5(a)(ii)	it (refers to sodium nitrate)/sodium nitrate would dissolve (in rain)/soluble (in water)/wash away/leach/drain off;	1	 A reacts with water I reference to fertiliser R sodium reacts/dissolves A because they are not dissolved by rainfall (implication is in desert)
5(a)(iii)	potassium (is required by plants as well as nitrogen)/NP K ;	1	comments about pH/better for soil/%N higher/reactivity of potassium I comments about what K does for plants e.g. combat disease
5 (b)(i)	$_{3} \rightarrow 2NaNO_{2} + O_{2}$ species; balancing;	2	A multiples I state symbols/word equation

Question	Answer	Marks	Guidance
6(b)(ii)	(colour changes) from pink/purple; to colourless/decolourised;	2	I clear/discoloured/effervescence I brown fumes/brown gas NOTE: stays pink or purple gets first mark but turns purple or pink is 0
6(b)(iii)	the more reactive the metal the lower rate of decomposition/more difficult the decomposition/more stable the nitrate/more energy needed to decompose/decomposes at higher temperature ora;	1	A less (extent the) decomposition A reactive metals produce nitrates difficult to decompose ora i.e. comparatives not essential A the more reactive the metal the less it decomposes is acceptable because we can assume that <i>it</i> refers to the nitrate BOD A inverse relationship with further qualification A group 1/reactive metals produce nitrite (and oxygen) and less reactive metals produce oxide (+ $NO_2 + O_2$) (both required for mark) I less products (unqualified) R less products/metals decompose
6(c)(i)	(changes from) blue solid/blue crystals; black solid formed;		 R precipitate A one mark out of the first two for changes from blue to black (without solid or crystals)
	brown gas/brown vapour/(pungent) smell;	3	I red/melt I water/steam/condensation given off I reference to glowing/burning splints/ colourless gas/effervescence I names/formulae

Question	Answer	Marks	Guidance
6(c)(ii)	Avogadro('s) number/constant/ 6.02×10^{23} ; COND particles;		A any values from 6 to 6.023×10^{23}
	OR		A atoms/ ions/ molecules/ electrons
	(the number of particles which is equal to the number of atoms in) 12g of carbon 12; COND atoms;		A one mark for reference to C12 A equivalent statement for any element or compound e.g. 32 grams of oxygen(1) COND
	OR		<u>molecules</u> / $O_2(1)$ e.g. 16 grams of oxygen (1)
	the mass in grams which contains Avogadro('s) Number; COND particles;		COND <u>atoms</u> /O(1)
	OR		
	(the amount of substance which has a mass equal to) its <u>relative</u> formula mass/RFM/ <u>relative</u> atomic mass/Ar/ <u>relative</u> molecular mass/Mr/molar mass; COND in grams;		
	OR		A different volumes under different conditions
	(the amount of substance which has a volume equal to) 24 dm ³ ; COND of a gas at RTP;	2	e.g. 22.4 dm ³ at STP or volumes in different units e.g. 24 000 cm ³ at RTP
6(c)(iii)	M1		
	(number of moles of CuO formed =) 0.03 ;		
	M2		
	(number of moles of $Cu(NO_3)_2$.xH ₂ O in 7.26 g =) 0.03 ;		ect same as M1
	M3		- (7.00 · M0
	(mass of 1 mole of Cu(NO ₃) ₂ .xH ₂ O 7.26 \div 0.03 =) 242 (g); (mass of 1 mole of Cu(NO ₃) ₂ is 188g)		ect 7.26 ÷ M2
	M4		
	the value of $x = 3$;	4	ecf M3 – 188 ÷ 18

Question	Answer	Marks	Guidance
7(a)(i)	3,	1	
(a)(ii)	₂ O ₃ ;	1	As ₂ O ₅
(a)(iii)	4;	1	
(b)(i)	3,	1	
(b)(ii)	2+,	1	
b)(iii)	+, ,	1	
(c)	 M1 2 double bonds, one between each O and the C atom; M2 each O has 8 outer electrons; M3 each C has 8 outer electrons; 	3	R wrong symbols for O for M2 R wrong symbols for C for M3 I missing symbols A any combination of x and o